现实中的大多数体系都是混合态,因此密度矩阵比波函数的概念更有用,不仅可以处理热力学平衡态,也可以处理化学平衡的体系,对于相互纠缠在一起的多个子系统,用密度矩阵描述也是很方便的。在量子退相干理论中,密度矩阵尤其重要,因为一些较大的量子体系,尤其是宏观体系,一般与外界存在大量的相互作用,即使是非常微弱的相互作用,也会对量子体系产生非常显著的影响,使量子态退相干为经典状态。
在退相干过程中,密度矩阵中的非对角元素迅速衰减为接近零的数值,而只剩下对角元素。每一个对角线上的元素都可以认为是某个经典概率,这样,当密度矩阵只剩下对角元素时,体系的状态就可以用经典概率来描述了。当密度矩阵非对角元素不可忽略时,表明体系拥有较高的量子成份,无法应用经典概率的方式进行描述。密度矩阵方法使目前最受欢迎的量子退相干历史诠释拥有了极好的数学工具,可以对更大、更复杂的量子体系进行精确的数学描述。
对于宏观现象,量子效应经常可以忽略,而我们的经典力学、经典热力学以及经典电磁学一般足够用来描述宏观世界了。而在微观世界里,我们也有了完善的量子力学,可以在很高的精度上理解微观行为。但是还有一个特殊的尺度,应该引起我们足够的重视,那就是介观尺度。
介观尺度可以理解为宏观尺度与微观尺度的交界处,对于宏观与微观,我们拥有两套不同的描述方式,但是在介观世界里,比如纳米尺度,体系既具有宏观体系的某些特征,又保留着微观世界的量子规律,两者产生的效应都不能忽略。随着摩尔定律使电子元件尺度不断缩小,量子规律在电子元件上的效应越来越显著,掌握和熟悉介观领域的物理规律变得非常迫切起来,而在这一尺度上,密度矩阵方法同样可以大显身手。
由于介观尺度上的物理学显然比原子尺度的物理规律复杂的多,而体系本身的复杂性又不能通过像宏观体系那样应用热力学统计平均的方式进行简化和近似,使这一尺度上的体系计算量非常大,使我们不得不借助计算机。
当我们拥有了计算这些介观体系的算法后,可以通过大型计算机或者量子模拟方法计算它们的各类性质,从而透彻的理解这个曾经被忽略的隐秘王国,而密度矩阵概念则是理解这一过程必不可少的数学工具。或许当我们揭开了介观物理学的神秘面纱,就可以研制出在量子规律下同样可以正常工作的晶体管,从而缩小晶体管的尺寸,继续将摩尔定律延伸下去。